Predictive Monitoring for Continuous Operations Management

Predictive Monitoring for Continuous Operations Management
Supply Chain Digital May 2021
By Tom Swallow
https://supplychaindigital.com/digital-supply-chain/predictive-monitoring-continuous-operations-management

Twin Thread’s Predictive Monitoring provides valuable analysis of Machine conditions for predictive maintenance of operations

Unplanned downtime and poor maintenance procedure can cost companies a lot of time and money.

For companies looking to set specific targets for cost efficiency, production output and quality control, the ability to predict how certain variables affect machines can aid success in reaching these targets.

Monitoring and remediation are important steps to optimize production, by adopting Predictive Monitoring, organizations can receive the ideal support to keep operations running efficiently, and ongoing maintenance to keep machines running at their best.

Predictive Monitoring

Predictive Monitoring is an AI driven method of production analysis. It uses metrics such as temperature and vibrations to determine when machines are working outside of their optimum conditions.

Around 98% of organizations report that a single hour of downtime can cost them over US$100,000, which highlights a significant cost implication that can be avoided with AI driven analytics.

Twin Thread applications work with Predictive Monitoring to provide a network of data, which ensure machines work within their optimum conditions, for the best output.

Providing the Digital Tools

According to PwC’s ‘Digital Factories 2020’ report, “manufacturers’ adoption of machine learning and analytics to improve predictive maintenance will increase by 38% by 2022.” One of the main reasons for this, given by 98% of respondents, is to gain more efficiency through investment into digital factory solutions.

By learning what potential issues may occur if machines are not working to the correct standard,  Predictive Monitoring systems work with Twin Thread’s Predictive Asset Reliability application, which conducts an “automated root cause analysis” enabling the operator to analyze how the machine has fallen from its optimum conditions. Ultimately, any issues will be addressed much faster when predictive technology uses data to monitor variables.

“Twin Thread’s Predictive Operations Center is making a big difference to our process engineers, giving them real-time feedback on the stability of our production,” said Domenic Verte, Manufacturing Application Manager at Toray.